
Mergesort, Insertion Sort, and Quicksort
Lecture 30 (Sorting 2)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• Quicksort

Lecture 30, CS61B, Spring 2024

Mergesort

Selection Sort: A Prelude to Mergesort

Earlier we discussed a sort called selection sort:
● Find the smallest unfixed item, move it to the front, and ‘fix’ it.
● Sort the remaining unfixed items using selection sort.

6 3 7 2 8 1

1 3 7 2 8 6

1 2 7 3 8 6

1 2 3 7 8 6

1 2 3 6 8 7

...

Runtime of selection sort is Θ(N2):
● Look at all N unfixed items to find smallest.
● Then look at N-1 remaining unfixed.
● …
● Look at last two unfixed items.
● Done, sum is 2+3+4+5+...+N = Θ(N2)

N=6

SS

Selection Sort: A Prelude to Mergesort/Example 5

Earlier in class we discussed a sort called selection sort:
● Find the smallest unfixed item, move it to the front, and ‘fix’ it.
● Sort the remaining unfixed items using selection sort.

Runtime of selection sort is Θ(N2):
● Look at all N unfixed items to find smallest.
● Then look at N-1 remaining unfixed.
● …
● Look at last two unfixed items.
● Done, sum is 2+3+4+5+...+N = Θ(N2)

Given that runtime is quadratic, for N = 64, we might say the runtime for selection
sort is 4,096 arbitrary units of time (AU).

N=64~4096 AU
SS

N=6~36 AU
SS

The Merge Operation: Another Prelude to Mergesort/Example 5

Given two sorted arrays, the merge operation combines them into a single sorted
array by successively copying the smallest item from the two arrays into a target
array.

Merging Demo (Link)

https://docs.google.com/presentation/d/1mdCppuWQfKG5JUBHAMHPgbSv326JtCi5mvjH1-6XcMw/edit?usp=sharing

Merge Runtime: http://yellkey.com/far

How does the runtime of merge grow with N, the total number of items?
A. Θ(1) C. Θ(N)
B. Θ(log N) D. Θ(N2)

2 3 6 10 11 4 5 7 8

2 3 4 5 6 7 8 10 11

Merge Runtime

How does the runtime of merge grow with N, the total number of items?
C. Θ(N). Why? Use array writes as cost model, merge does exactly N writes.

2 3 6 10 11 4 5 7 8

2 3 4 5 6 7 8 10 11

Using Merge to Speed Up the Sorting Process

Merging can give us an improvement over vanilla selection sort:
● Selection sort the left half: Θ(N2).
● Selection sort the right half: Θ(N2).
● Merge the results: Θ(N).

N=64

N=32 N=32~1024 AU

~64 AU

~1024
SSSS

MN=64: ~2112 AU.

● Merge: ~64 AU.
● Selection sort: ~2*1024 = ~2048 AU.

Still Θ(N2), but faster since N+2*(N/2)2 < N2

● ~2112 vs. ~4096 AU for N=64.

N=64~4096 AU
SS

Two Merge Layers

Can do even better by adding a second layer of merges.

Runtime for each sort:

● Selection sort only: ~4096 AU.
● One layer of merges: ~2112 AU.
● Two layers of merges: ~1152 AU.

○ Merge: ~64 AU + 2*~32 AU.
○ Selection sort: 4*~256.

N=64

N=32 N=32~32

~64

~32

MM

M

16 16 16 16
SS SS SS SS

~256

N=64~4096 AU
SS

Example 5: Mergesort

Mergesort does merges all the way down (no selection sort):
● If array is of size 1, return.
● Mergesort the left half: Θ(??).
● Mergesort the right half: Θ(??).
● Merge the results: Θ(N). N=64

SS

64

32 32

16 16 16 ….

8 8 ….

64

32 32

16 16 16

8 8

M

M M

M M M

M M

Total runtime to merge all the way down: ~384 AU

● Top layer: ~64 = 64 AU
● Second layer: ~32*2 = 64 AU
● Third layer: ~16*4 = 64 AU
● Overall runtime in AU is ~64k, where k is the

number of layers.
● k = log

2
(64) = 6, so ~384 total AU.

k

...

~4096 AU

Example 5: Mergesort Order of Growth, yellkey.com/consider

For an array of size N, what is the worst case runtime of Mergesort?
A. Θ(1)
B. Θ(log N)
C. Θ(N)
D. Θ(N log N)
E. Θ(N2)

N

N/2 N/2

N/4 N/4 N/4 ….

N/8 N/8 ….

N/4

N/8 N/8

k

Example 5: Mergesort Order of Growth

Mergesort has worst case runtime = Θ(N log N).
● Every level takes ~N AU.

○ Top level takes ~N AU.
○ Next level takes ~N/2 + ~N/2 = ~N.
○ One more level down: ~N/4 + ~N/4 + ~N/4 + ~N/4 = ~N.

● Thus, total runtime is ~Nk, where k is the number of levels.
○ How many levels? Goes until we get to size 1.
○ k = log2(N).

● Overall runtime is Θ(N log N).

Exact count explanation is tedious.
● Omitted here. See textbook exercises.

N

N/2 N/2

N/4 N/4 N/4 ….

N/8 N/8 ….

N/4

N/8 N/8

k

Mergesort

We’ve seen this one before as well.

Mergesort:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

Time complexity, analysis from asymptotics lecture: Θ(N log N runtime)
● Space complexity with aux array: Costs Θ(N) memory.

Also possible to do in-place merge sort, but algorithm is very complicated, and
runtime performance suffers by a significant constant factor.

Top-Down Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half.
● Merge the two sorted halves to form the final result.

32 15 2 17 19 26 41 17 17Input:

unsorted

Top-Down Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half.
● Merge the two sorted halves to form the final result.

32 15 2 17 19 26 41 17 17Input:

Left half Right half

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

2 15 17 32 17 17 19 26 41Input:

sorted sorted

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j].
○ Copy smaller item and increment p and i or j.

Input:

Aux: 0 0 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 0 0 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 0 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 0 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 0 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 0 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 0 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 0 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 0 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 26 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 26 0 0

i j

2 15 17 32 17 17 19 26 41

p

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 26 32 0

i j

2 15 17 32 17 17 19 26 41

p

No comparison is made
this time, since the left
side has run out of items!

Merge Sort

Top-Down merge sorting N items:
● Split items into 2 roughly even pieces.
● Mergesort each half (steps not shown, this is a recursive algorithm!)
● Merge the two sorted halves to form the final result.

○ Compare input[i] < input[j] (if necessary).
○ Copy smaller item and increment p and i or j.

Input:

Aux: 2 15 17 17 17 19 26 32 41

i j

2 15 17 32 17 17 19 26 41

p

Sorts So Far

Best Case
Runtime

Worst Case
Runtime

Space Demo Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) Link

Heapsort
(in place)

Θ(N)* Θ(N log N) Θ(1)** Link Bad cache (61C)
performance.

Mergesort Θ(N log N) Θ(N log N) Θ(N) Link Faster than heap
sort.

*: An array of all duplicates yields linear runtime for heapsort.
**: Assumes heap operations implemented iteratively, not recursively.

http://algs4.cs.princeton.edu/21elementary/Selection.java.html
#
http://algs4.cs.princeton.edu/24pq/Heap.java.html
#
http://algs4.cs.princeton.edu/14analysis/Mergesort.java.html

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• Quicksort

Lecture 30, CS61B, Spring 2024

Naive Insertion
Sort

Insertion Sort

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output: Demo (Link)

32 15 2 17 19 26 41 17 17Input:

Output:

http://goo.gl/bVyVCS

Insertion Sort

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

32 15 2 17 19 26 41 17 17Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

3215

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32152

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32152 17

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32152 17 19

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32152 17 19 26

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41 17 17

32152 17 19 26 41

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41

17

17

32152 17 19 26 41

17

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Insertion Sort

32 15 2 17 19 26 41

17

17

32152 17 19 26 41

17

17

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

Naive approach, build entirely new output:

Input:

Output:

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• Quicksort

Lecture 30, CS61B, Spring 2024

In-Place Insertion
Sort

Insertion Sort

General strategy:
● Starting with an empty output sequence.
● Add each item from input, inserting into output at right point.

For naive approach, if output sequence contains k items, worst cost to insert a
single item is k.
● Might need to move everything over.

More efficient method:
● Do everything in place using swapping.

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

32 15 2 17 19 26 41 17 17

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

32 15 2 17 19 26 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

32 15 2 17 19 26 41 17 17

i

j

sorted unexamined

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

32 15 2 17 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

15 32 2 17 19 26 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

15 32 2 17 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

15 32 2 17 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

15 2 32 17 19 26 41 17 17

i

jNote: We’ve temporarily broken
our invariant that the items up
through item i should be sorted!

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

In-place Insertion Sort

2 15 32 17 19 26 41 17 17

i

jOnce the traveller settles,
the invariant is restored.

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 32 17 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 32 17 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 32 19 26 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

In-place Insertion Sort

2 15 17 32 19 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 32 19 26 41 17 17

j

sorted

i

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 32 26 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 32 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 32 26 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 41 17 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 32 17 41 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 26 17 32 41 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 19 17 26 32 41 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 32 41 17

i

j

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 32 41 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 32 41 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 32 41 17

i

j

sorted

In example above: Use j pointer to track current spot of traveling item.

unexamined

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 32 17 41

i

j

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 26 17 32 41

i

j

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 19 17 26 32 41

i

j

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 17 19 26 32 41

i

j

In example above: Use j pointer to track current spot of traveling item.

Input:

In-place Insertion Sort

General strategy:
● Repeat for i = 0 to N - 1:

○ Designate item i as the traveling item.
○ Swap item backwards until traveller is in the right place among all

previously examined items.

2 15 17 17 17 19 26 32 41Input:

i

j

In example above: Use j pointer to track current spot of traveling item.

sorted

Lecture 30, CS61B, Spring 2024

Insertion Sort
Runtime

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• Quicksort

In-place Insertion Sort

Two more examples.

P O T A T O
P O T A T O (0 swaps)
O P T A T O (1 swap)
O P T A T O (0 swaps)
A O P T T O (3 swaps)
A O P T T O (0 swaps)
A O O P T T (3 swaps)

S O R T E X A M P L E
S O R T E X A M P L E (0 swaps)
O S R T E X A M P L E (1 swap)
O R S T E X A M P L E (1 swap)
O R S T E X A M P L E (0 swaps)
E O R S T X A M P L E (4 swaps)
E O R S T X A M P L E (0 swaps)
A E O R S T X M P L E (6 swaps)
A E M O R S T X P L E (5 swaps)
A E M O P R S T X L E (4 swaps)
A E L M O P R S T X E (7 swaps)
A E E L M O P R S T X (8 swaps)

7 swaps: 36 swaps:

Purple: Element that we’re moving left (with swaps).
Black: Elements that got swapped with purple.
Grey: Not considered this iteration.

Insertion Sort Runtime: yellkey.com/TODO

What is the runtime of insertion sort?
A. Ω(1), O(N)
B. Ω(N), O(N)
C. Ω(1), O(N2)
D. Ω(N), O(N2)
E. Ω(N2), O(N2)

36 swaps:

Insertion Sort Runtime

What is the runtime of insertion sort?
A. Ω(1), O(N)
B. Ω(N), O(N)
C. Ω(1), O(N2)
D. Ω(N), O(N2)
E. Ω(N2), O(N2)

You may recall Ω is not “best case”.
So technnnniically you could also say
 Ω(1)

36 swaps:

Picking the Best Sort: yellkey.com/TODO

Suppose we do the following:
● Read 1,000,000 integers from a file into an array of length 1,000,000.
● Mergesort these integers.
● Select one integer randomly and change it.
● Sort using algorithm X of your choice.

Which sorting algorithm would be the fastest choice for X?
A. Selection Sort: O(N2)
B. Heapsort: O(N Log N)
C. Mergesort: O(N Log N)
D. Insertion Sort: O(N2)

Observation: Insertion Sort on Almost Sorted Arrays

For arrays that are almost sorted, insertion sort does very little work.
● Left array: 5 inversions, so only 5 swaps.
● Right array: 3 inversion, so only 3 swaps.

Picking the Best Sort (Poll Everywhere)

Suppose we do the following:
● Read 1,000,000 integers from a file into an array of length 1,000,000.
● Mergesort these integers.
● Select one integer randomly and change it.
● Sort using algorithm X of your choice.
● In the worst case, we have 999,999 inversions: Θ(N) inversions.

Which sorting algorithm would be the fastest choice for X? Worst case run-times:
A. Selection Sort: Θ(N2)
B. Heapsort: Θ(N log N)
C. Mergesort: Θ(N log N)
D. Insertion Sort: Θ(N)

Insertion Sort Sweet Spots

On arrays with a small number of inversions, insertion sort is extremely fast.
● One exchange per inversion (and number of comparisons is similar). Runtime

is Θ(N + K) where K is number of inversions.
● Define an almost sorted array as one in which number of inversions ≤ cN for

some c. Insertion sort is excellent on these arrays.

Less obvious: For small arrays (N < 15 or so), insertion sort is fastest.
● More of an empirical fact than a theoretical one.
● Theoretical analysis beyond scope of the course.
● Rough idea: Divide and conquer algorithms like heapsort / mergesort spend

too much time dividing, but insertion sort goes straight to the conquest.
● The Java implementation of Mergesort does this (Link).

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-b14/java/util/Arrays.java#Arrays.mergeSort%28java.lang.Object%5B%5D%2Cjava.lang.Object%5B%5D%2Cint%2Cint%2Cint%29

Sorts So Far

Best Case
Runtime

Worst Case
Runtime

Space Demo Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) Link

Heapsort
(in place)

Θ(N)* Θ(N log N) Θ(1) Link Bad cache (61C)
performance.

Mergesort Θ(N log N) Θ(N log N) Θ(N) Link Fastest of these.

Insertion Sort
(in place)

Θ(N) Θ(N2) Θ(1) Link Best for small N or
almost sorted.

See this link for bonus slides on Shell's Sort, an
optimization of insertion sort.

http://algs4.cs.princeton.edu/21elementary/Selection.java.html
#
http://algs4.cs.princeton.edu/24pq/Heap.java.html
#
http://algs4.cs.princeton.edu/14analysis/Mergesort.java.html
#
http://algs4.cs.princeton.edu/21elementary/Insertion.java.html
https://docs.google.com/presentation/d/14RfFPU3RX9iDpE4OCXlXKmtaoxZbdNdcXTGhC9dr9xQ/edit#slide=id.g12a12f5ae1_0_98

Lecture 30, CS61B, Spring 2024

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• Quicksort

Quicksort
Backstory,
Partitioning

Sorts So Far

Best Case
Runtime

Worst Case
Runtime

Space Demo Notes

Selection Sort Θ(N2) Θ(N2) Θ(1) Link

Heapsort
(in place)

Θ(N)* Θ(N log N) Θ(1) Link Bad cache (61C)
performance.

Mergesort Θ(N log N) Θ(N log N) Θ(N) Link Fastest of these.

Insertion Sort
(in place)

Θ(N) Θ(N2) Θ(1) Link Best for small N or
almost sorted.

See this link for bonus slides on Shell's Sort, an
optimization of insertion sort.

http://algs4.cs.princeton.edu/21elementary/Selection.java.html
#
http://algs4.cs.princeton.edu/24pq/Heap.java.html
#
http://algs4.cs.princeton.edu/14analysis/Mergesort.java.html
#
http://algs4.cs.princeton.edu/21elementary/Insertion.java.html
#
https://docs.google.com/presentation/d/14RfFPU3RX9iDpE4OCXlXKmtaoxZbdNdcXTGhC9dr9xQ/edit#slide=id.g12a12f5ae1_0_98

Sorting So Far

Core ideas:
● Selection sort: Find the smallest item and put it at the front.

○ Heapsort variant: Use MaxPQ to find max element and put at the back.
● Merge sort: Merge two sorted halves into one sorted whole.
● Insertion sort: Figure out where to insert the current item.

Quicksort:
● Much stranger core idea: Partitioning.
● Invented by Sir Tony Hoare in 1960, at the time a novice programmer.

Context for Quicksort’s Invention (Source)

1960: Tony Hoare was working on a crude automated translation program for
Russian and English.

... ...

beautiful красивая

... ...

cat кошка

... ...

“The cat wore a beautiful hat.”

Dictionary of D english words

N words

“Кошка носил
красивая шапка.”

How would you do this?
● Binary search for each word.

○ Find “the” in log D time.
○ Find “cat” in log D time...

● Total time: N log D

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort

Context for Quicksort’s Invention (Source)

Limitation at the time:
● Dictionary stored on long piece of tape, sentence is an array in RAM.

○ Binary search of tape is not log time (requires physical movement!).
● Better: Sort the sentence and scan dictionary tape once. Takes N log N + D time.

○ But Tony had to figure out how to sort an array (without Google!)...

1960: Tony Hoare was working on a crude automated translation program for
Russian and English.

Algorithm: N binary searches of D length dictionary.
● Total runtime: N log D
● ASSUMES log time binary search!

... ...

beautiful красивая

... ...

cat кошка

... ...

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort

Core Idea of Tony’s Sort: Partitioning http://yellkey.com/TODO

To partition an array a[] on element x=a[i] is to rearrange a[] so that:
● x moves to position j (may be the same as i)
● All entries to the left of x are <= x.
● All entries to the right of x are >= x.

5 550 10 4 10 9 330

Which partitions are valid?

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j

Called the ‘pivot’.

The Core Idea of Tony’s Sort: Partitioning

To partition an array a[] on element x=a[i] is to rearrange a[] so that:
● x moves to position j (may be the same as i)
● All entries to the left of x are <= x.
● All entries to the right of x are >= x.

5 550 10 4 10 9 330

Which partitions are valid?

i

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.

C.

B.

D.

j j

j j

Called the ‘pivot’.

Job Interview Style Question (Partitioning)

Given an array of colors where the 0th element is white (and maybe a few more),
and the remaining elements are red (less) or blue (greater), rearrange the array so
that all red squares are to the left of the white square, the white squares end up
together, and all blue squares are to the right. Your algorithm must complete in Θ
(N) time (no space restriction).
● Relative order of red and blues does NOT need to stay the same.

3 1 2 4 6 8 7 3 4 1 2 6 7 8

Example of a valid output Another example of a valid output

6 8 3 1 2 7 4

Input

6

6 6

Lecture 30, CS61B, Spring 2024

Mergesort
Insertion Sort

• Naive Insertion Sort
• In-Place Insertion Sort
• Insertion Sort Runtime

Quicksort
• Quicksort Backstory,

Partitioning
• QuicksortQuicksort

Partition Sort, a.k.a. Quicksort

Observations:
● 5 is “in its place.” Exactly where it’d be if the array were sorted.
● Can sort two halves separately, e.g. through recursive use of partitioning.

5 3 2 1 8 4 67

3 2 1 4 7 8 65

3 2 1 4 5 7 8 65

2 1 3 4 5 6 7 85

Q: How would we use this
operation for sorting?

Quick Sort

Quick sorting N items:
● Partition on leftmost item.
● Quicksort left half.
● Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

unsorted

Quick Sort

Quick sorting N items:
● Partition on leftmost item (32).
● Quicksort left half.
● Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

partition(32)

Quick Sort

Quick sorting N items:
● Partition on leftmost item (32).
● Quicksort left half.
● Quicksort right half.

15 2 17 19 26 17 17 32 41Input:

<= 32 >= 32

in its
place

partition(32)

Quick Sort

Quick sorting N items:
● Partition on leftmost item (32) (done).
● Quicksort left half.
● Quicksort right half.

15 2 17 19 26 17 17 32Input:

in its
place

41

partition(32)

Quick Sort

Quick sorting N items:
● Partition on leftmost item (32) (done).
● Quicksort left half (details not shown).
● Quicksort right half.

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

x

Quick sorting N items:
● Partition on leftmost item (32) (done).
● Quicksort left half (details not shown).
● Quicksort right half (details not shown).

Quick Sort

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

in its
place

If you don't fully trust
the recursion, see
these extra slides for
a complete demo. x

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit#slide=id.g12aaf29688_0_307

Partition Sort, a.k.a. Quicksort

32 15 2 17 19 26 41 17 17

partition(32)

15 2 17 19 26 17 17 32 41

<= 32 >= 32

in its
place

Quick sorting N items:
● Partition on leftmost item.
● Quicksort left half.
● Quicksort right half.

Quicksort

Quicksort was the name chosen by Tony Hoare for partition sort.
● For most common situations, it is empirically the fastest sort.

○ Tony was lucky that the name was correct.

How fast is Quicksort? Need to count number and difficulty of partition operations.

Theoretical analysis:
● Partitioning costs Θ(K) time, where Θ(K) is the number of elements being

partitioned (as we saw in our earlier “interview question”).
● The interesting twist: Overall runtime will depend crucially on where pivot

ends up.

